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Quantum many-body physics

Consider an 𝑁 -body system:

… …

Classical: 𝒪(𝑁 ) DOFs.

Quantum: 𝒪(exp𝑁) DOFs.

For classical computers, need to encode important DOFs.
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Why matrix product states?

… …

Represent state as a matrix product state (MPS)

|Ψ⟩ = … .

Discard ‘long-range’ entanglement, keep local entanglement.

Good for certain states (area law of entanglement).

Limited for ‘general’ states (e.g. out of equilibrium).

Works for 1D or quasi-1D systems.

Also other varieties of tensor networks.
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Singular value decomposition

The fundamental building block of MPS is the

Singular value decomposition (SVD)

For an 𝑛 × 𝑚 matrix 𝑀 , we can write

𝑀 = 𝑈𝑆𝑉 †,

where 𝑈 and 𝑉 † are unitary, and 𝑆 is nonnegative real diagonal
(singular value matrix).

Analogous (but not equivalent) to eigenvalue decomposition.

Can form an approximate SVD by only keeping 𝑛 largest
singular values.
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SVD image compression

Image taken from Wikipedia: CC BY-SA 4.0 by Samir.beall.
See also: https://timbaumann.info/svd-image-compression-demo/
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Schmidt decomposition

Given a pure state for an 𝑁 -body system

|Ψ⟩ = ∑
𝑠1𝑠2⋯𝑠𝑁

𝑐𝑠1𝑠2⋯𝑠𝑁 |𝑠1⟩ ⊗ |𝑠2⟩ ⊗ ⋯ ⊗ |𝑠𝑁 ⟩ ,

we make a bipartition between sites 𝑛 and 𝑛 + 1,
view this 𝑐 as a matrix, and take an SVD

𝑐(𝑠1⋯𝑠𝑛)(𝑠𝑛+1⋯𝑠𝑁 ) = ∑
𝑖𝑗

𝑈 (𝑠1⋯𝑠𝑛)𝑖𝑆 𝑖𝑗(𝑉 †)𝑗(𝑠𝑛+1⋯𝑠𝑁 ).
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Schmidt decomposition

Can use graphical notation for tensors:

|Ψ⟩ =
𝑐

…
.

Taking the Schmidt decomposition:

|Ψ⟩ =
𝑈 𝑆 𝑉 †

1
…

𝑛 𝑛+1
…

𝑁

.

Entanglement entropy 𝒮 given in terms of singular values:

𝒮 = −Tr(𝜌𝐴 ln 𝜌𝐴) = −∑
𝑖
𝑆2𝑖 ln 𝑆2𝑖 ;

Can we use an approximate SVD here?
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Singular value spectrum

Transverse field Ising chain

𝐻̂ = −𝐽 ∑
𝑗
𝜎̂ 𝑧𝑗 𝜎̂

𝑧
𝑗+1 + ℎ∑

𝑗
𝜎̂𝑥𝑗 .

Ground state at ℎ/𝐽 = 0.8:
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Spectrum collapses at critical point ℎ/𝐽 = 1.
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Area law of entanglement entropy

… …

Area law

For ground states of local Hamiltonians with an energy gap in one
spatial dimension, the entanglement entropy of the ground state
scales as the boundary area of the bipartition (i.e. constant).

Only need a constant number of singular values as 𝑁 → ∞.

Critical (gapless) states: area law plus logarithmic correction.

Holds in some ≥ 2D systems (less rigorous proofs).

Entropy grows (linearly) out of equilibrium.
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Matrix product states

|Ψ⟩ =
𝑈 𝑆 𝑉 †

1
…

𝑛 𝑛+1
…

𝑁

Take a Schmidt decomposition between every pair of sites:

|Ψ⟩ =
𝐴𝑠1
1 𝐴𝑠2

2 𝐴𝑠3
3

…
𝐴𝑠𝑁
𝑁

1 2 3 𝑁

,

obtain a matrix product state (MPS).
In general, each 𝐴𝑠𝑛𝑛 is a 𝐷 × 𝐷 matrix (𝐷: bond dimension).
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Matrix product states

|Ψ⟩ =
𝐴𝑠1
1 𝐴𝑠2

2 𝐴𝑠3
3

…
𝐴𝑠𝑁
𝑁

1 2 3 𝑁

Efficient compression of state: 𝑂(𝑁𝐷2) degrees of freedom
(compare 𝑂(exp𝑁) for an arbitrary state).

Efficient evaluation of expectation values:

⟨Ψ|𝑂𝑖|Ψ⟩ =
…

𝐴𝑖−1 𝐴𝑖 𝐴𝑖+1
…

… …
𝑂 .
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Matrix product operators

Decompose larger operators as matrix product operators (MPOs):

= .

Efficiently evaluate global operators, e.g. Hamiltonian:

⟨Ψ|𝐻̂ |Ψ⟩ =
…

…
… .
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What can we do with MPSs?

Cannot fully diagonalize Hamiltonian.

Can find ground states (DMRG).

Can perform time evolution (limited timescale: entanglement).

Can look at some excited/thermal states.
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Density matrix renormalization group (DMRG)

To find ground state: minimize energy.

Cannot update entire MPS at once: update tensors one at a time.

To optimize tensor 𝐴𝑖, want to minimize

ℋ 𝑖
eff =

…
𝐴𝑖−1 𝐴𝑖+1

…

… …
… … = .
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Density matrix renormalization group (DMRG)

Update tensors, sweeping from left to right:

𝐴1 𝐴2 𝐴3 𝐴4
…

𝐴𝑁−1𝐴𝑁
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Sample Python DMRG code

https://mptoolkit.qusim.net/Tutorials/MPS-DMRG
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https://mptoolkit.qusim.net/Tutorials/MPS-DMRG


Outlook: Time evolution

|Ψ(𝑡 + Δ𝑡)⟩ = ei𝐻̂Δ𝑡 |Ψ(𝑡)⟩

Can replace energy optimization in DMRG with time
propagation (time-dependent variational principle: TDVP).

Can approximate the time-evolution operator (time-evolving
block decimation: TEBD; MPO time evolution).
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Outlook: Other directions

Infinite states by explicitly enforcing translation invariance.

Explicitly enforce global symmetries by writing tensors in
quantum number blocks.

Can look at two-dimensional systems by using cylinders:

… …

Exponential growth in bond dimension with circumference.
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Outlook: Other directions

Other types of tensor networks for higher spatial dimensions:

|Ψ⟩ =

…
…

… … .

Downside: Less efficient algorithms compared with MPS.
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Further reading

U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Annals of Physics 326, 96 (2011).

J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: an
introductory course on tensor networks, Journal of Physics A: Mathematical and
Theoretical 50, 223001 (2017).
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